Fields
The Field
class and its subclasses repackage the information from a Catalog
into a ball tree data structure, allowing for fast calcaulation of the correlation
functions.
There are several kinds of Field
classes.
Field
itself is an abstract base class of the other kinds of fields, and has a few methods that are available for allField
types.
NField
holds counts of objects and is used for correlations with an N in the name, includingNNCorrelation
,NGCorrelation
,NKCorrelation
, andNNNCorrelation
.
KField
holds both counts of objects and the mean “kappa” of those objects. It is used for correlations with a K in the name, includingKKCorrelation
,NKCorrelation
,KGCorrelation
, andKKKCorrelation
.
ZField
holds both counts of objects and the mean value of the complex field of those objects. It is used for correlations with a Z in the name, includingZZCorrelation
,NZCorrelation
, andKZCorrelation
.
VField
holds both counts of objects and the mean vector field of those objects. It is used for correlations with a V in the name, includingVVCorrelation
,NVCorrelation
, andKVCorrelation
.
GField
holds both counts of objects and the mean shear of those objects. It is used for correlations with a G in the name, includingGGCorrelation
,NGCorrelation
,KGCorrelation
, andGGGCorrelation
.
TField
holds both counts of objects and the mean trefoil field of those objects. It is used for correlations with a V in the name, includingVVCorrelation
,NVCorrelation
, andKVCorrelation
.
QField
holds both counts of objects and the mean quatrefoil field of those objects. It is used for correlations with a V in the name, includingVVCorrelation
,NVCorrelation
, andKVCorrelation
.
Typically, one would not create any of these objects directly, but would instead
use Catalog methods getNField
, getKField
, getGField
, getVField
.
Or indeed, usually, one does not even do that, and just lets the relevant process
command do so for you.
- class treecorr.Field[source]
A Field in TreeCorr is the object that stores the tree structure we use for efficient calculation of the correlation functions.
The root “cell” in the tree has information about the whole field, including the total number of points, the total weight, the mean position, the size (by which we mean the maximum distance of any point from the mean position), and possibly more information depending on which kind of field we have.
It also points to two sub-cells which each describe about half the points. These are commonly referred to as “daughter cells”. They in turn point to two more cells each, and so on until we get to cells that are considered “small enough” according to the
min_size
parameter given in the constructor. These lowest level cells are referred to as “leaves”.Technically, a Field doesn’t have just one of these trees. To make parallel computation more efficient, we actually skip the first few layers of the tree as described above and store a list of root cells. The three parameters that determine how many of these there will be are
max_size
,min_top
, andmax_top
:max_size
sets the maximum size cell that we want to make sure we have in the trees, so the root cells will be at least this large. The default is None, which means we care about all sizes, so there may be only one root cell (but typically more because ofmin_top
).min_top
sets the minimum number of initial levels to skip. The default is either 3 or \(\log_2(N_{cpu})\), whichever is larger. This means there will be at least 8 (or \(N_{cpu}\)) root cells (assuming ntot is at least this large of course).max_top
sets the maximum number of initial levels to skip. The default is 10, which means there could be up to 1024 root cells.
Finally, the
split_method
parameter sets how the points in a cell should be divided when forming the two daughter cells. The split is always done according to whichever dimension has the largest extent. E.g. if max(|x - meanx|) is larger than max(|y - meany|) and (for 3d) max(|z - meanz|), then it will split according to the x values. But then it may split in different ways according tosplit_method
. The allowed values are:‘mean’ means to divide the points at the average (mean) value of x, y or z.
‘median’ means to divide the points at the median value of x, y, or z.
‘middle’ means to divide the points at midpoint between the minimum and maximum values.
‘random’ means to divide the points randomly somewhere between the 40th and 60th percentile locations in the sorted list.
Field itself is an abstract base class for the specific types of field classes. As such, it cannot be constructed directly. You should make one of the concrete subclasses:
NField
describes a field of objects to be counted only.KField
describes a field of points sampling a scalar field (e.g. kappa in the weak lensing context). In addition to the above values, cells keep track of the mean value in the given region.ZField
describes a complex scalar (spin-0) field. In addition to the above values, cells keep track of the mean (complex) value in the given region.VField
describes a field of points sampling a vector (spin-1) field. In addition to the above values, cells keep track of the mean (complex) vector in the given region.GField
describes a field of points sampling a shear (spin-2) field (e.g. gamma in the weak lensing context). In addition to the above values, cells keep track of the mean (complex) gamma value in the given region.TField
describes a field of points sampling a trefoil (spin-3) field. In addition to the above values, cells keep track of the mean (complex) value in the given region.QField
describes a field of points sampling a quatrefoil (spin-4) field. In addition to the above values, cells keep track of the mean (complex) value in the given region.
- property cat
The catalog from which this field was constructed.
It is stored as a weakref, so if the Catalog has already been garbage collected, this might be None.
- count_near(*args, **kwargs)[source]
Count how many points are near a given coordinate.
Use the existing tree structure to count how many points are within some given separation of a target coordinate.
There are several options for how to specify the reference coordinate, which depends on the type of coordinate system this field implements.
For flat 2-dimensional coordinates:
- Parameters:
x (float) – The x coordinate of the target location
y (float) – The y coordinate of the target location
sep (float) – The separation distance
For 3-dimensional Cartesian coordinates:
- Parameters:
x (float) – The x coordinate of the target location
y (float) – The y coordinate of the target location
z (float) – The z coordinate of the target location
sep (float) – The separation distance
For spherical coordinates:
- Parameters:
ra (float or Angle) – The right ascension of the target location
dec (float or Angle) – The declination of the target location
c (CelestialCorod) – A
coord.CelestialCoord
object in lieu of (ra, dec)sep (float or Angle) – The separation distance
ra_units (str) – The units of ra if given as a float
dec_units (str) – The units of dec if given as a float
sep_units (str) – The units of sep if given as a float
For spherical coordinates with distances:
- Parameters:
ra (float or Angle) – The right ascension of the target location
dec (float or Angle) – The declination of the target location
c (CelestialCorod) – A
coord.CelestialCoord
object in lieu of (ra, dec)r (float) – The distance to the target location
sep (float) – The separation distance
ra_units (str) – The units of ra if given as a float
dec_units (str) – The units of dec if given as a float
In all cases, for parameters that are angles (ra, dec, sep for ‘spherical’), you may either provide this quantity as a
coord.Angle
instance, or you may provide ra_units, dec_units or sep_units respectively to specify which angular units are providing.Finally, in cases where ra, dec are allowed, you may instead provide a
coord.CelestialCoord
instance as the first argument to specify both RA and Dec.
- get_near(*args, **kwargs)[source]
Get the indices of points near a given coordinate.
Use the existing tree structure to find the points that are within some given separation of a target coordinate.
There are several options for how to specify the reference coordinate, which depends on the type of coordinate system this field implements.
For flat 2-dimensional coordinates:
- Parameters:
x (float) – The x coordinate of the target location
y (float) – The y coordinate of the target location
sep (float) – The separation distance
For 3-dimensional Cartesian coordinates:
- Parameters:
x (float) – The x coordinate of the target location
y (float) – The y coordinate of the target location
z (float) – The z coordinate of the target location
sep (float) – The separation distance
For spherical coordinates:
- Parameters:
ra (float or Angle) – The right ascension of the target location
dec (float or Angle) – The declination of the target location
c (CelestialCorod) – A
coord.CelestialCoord
object in lieu of (ra, dec)sep (float or Angle) – The separation distance
ra_units (str) – The units of ra if given as a float
dec_units (str) – The units of dec if given as a float
sep_units (str) – The units of sep if given as a float
For spherical coordinates with distances:
- Parameters:
ra (float or Angle) – The right ascension of the target location
dec (float or Angle) – The declination of the target location
c (CelestialCorod) – A
coord.CelestialCoord
object in lieu of (ra, dec)r (float) – The distance to the target location
sep (float) – The separation distance
ra_units (str) – The units of ra if given as a float
dec_units (str) – The units of dec if given as a float
In all cases, for parameters that are angles (ra, dec, sep for ‘spherical’), you may either provide this quantity as a
coord.Angle
instance, or you may provide ra_units, dec_units or sep_units respectively to specify which angular units are providing.Finally, in cases where ra, dec are allowed, you may instead provide a
coord.CelestialCoord
instance as the first argument to specify both RA and Dec.
- kmeans_assign_patches(centers)[source]
Assign patch numbers to each point according to the given centers.
This is final step in the full K-Means algorithm. It assignes patch numbers to each point in the field according to which center is closest.
- Parameters:
centers (array) – An array of center coordinates. Shape is (npatch, 2) for flat geometries or (npatch, 3) for 3d or spherical geometries. In the latter case, the centers represent (x,y,z) coordinates on the unit sphere.
- Returns:
An array of patch labels, all integers from 0..npatch-1. Size is self.ntot.
- kmeans_initialize_centers(npatch, init='tree', *, rng=None)[source]
Use the field’s tree structure to assign good initial centers for a K-Means run.
The classic K-Means algorithm involves starting with random points as the initial centers of the patches. This has a tendency to result in rather poor results in terms of having similar sized patches at the end. Specifically, the standard deviation of the inertia at the local minimum that the K-Means algorithm settles into tends to be fairly high for typical geometries.
A better approach is to use the existing tree structure to start out with centers that are fairly evenly spread out through the field. This algorithm traverses the tree until we get to a level that has enough cells for the requested number of patches. Then it uses the centroids of these cells as the initial patch centers.
- Parameters:
npatch (int) – How many patches to generate initial centers for
init (str) –
Initialization method. Options are:
’tree’ (default) = Use the normal tree structure of the field, traversing down to a level where there are npatch cells, and use the centroids of these cells as the initial centers. This is almost always the best choice.
’random’ = Use npatch random points as the intial centers.
’kmeans++’ = Use the k-means++ algorithm. cf. https://en.wikipedia.org/wiki/K-means%2B%2B
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
- Returns:
An array of center coordinates. Shape is (npatch, 2) for flat geometries or (npatch, 3) for 3d or spherical geometries. In the latter case, the centers represent (x,y,z) coordinates on the unit sphere.
- kmeans_refine_centers(centers, *, max_iter=200, tol=1e-05, alt=False)[source]
Fast implementation of the K-Means algorithm
The standard K-Means algorithm is as follows (cf. https://en.wikipedia.org/wiki/K-means_clustering):
Choose centers somehow. Traditionally, this is done by just selecting npatch random points from the full set, but we do this more smartly in
kmeans_initialize_centers
.For each point, measure the distance to each current patch center, and assign it to the patch that has the closest center.
Update all the centers to be the centroid of the points assigned to each patch.
Repeat 2, 3 until the rms shift in the centers is less than some tolerance or the maximum number of iterations is reached.
Assign the corresponding patch label to each point (
kmeans_assign_patches
).
In TreeCorr, we use the tree structure to massively increase the speed of steps 2 and 3. For a given cell, we know both its center and its size, so we can quickly check whether all the points in the cell are closer to one center than another. This lets us quickly cull centers from consideration as we traverse the tree. Once we get to a cell where only one center can be closest for any of the points in it, we stop traversing and assign the whole cell to that patch.
Further, it is also fast to update the new centroid, since the sum of all the positions for a cell is just N times the cell’s centroid.
As a result, this algorithm typically takes a fraction of a second for ~a million points. Indeed most of the time spent in the full kmeans calculation is in building the tree in the first place, rather than actually running the kmeans code. With the alternate algorithm (
alt=True
), the time is only slightly slower from having to calculate the sizes at each step.- Parameters:
centers (array) – An array of center coordinates. (modified by this function) Shape is (npatch, 2) for flat geometries or (npatch, 3) for 3d or spherical geometries. In the latter case, the centers represent (x,y,z) coordinates on the unit sphere.
max_iter (int) – How many iterations at most to run. (default: 200)
tol (float) – Tolerance in the rms centroid shift to consider as converged as a fraction of the total field size. (default: 1.e-5)
alt (bool) – Use the alternate assignment algorithm to minimize the standard deviation of the inertia rather than the total inertia (aka WCSS). (default: False)
- property nTopLevelNodes
The number of top-level nodes.
- run_kmeans(npatch, *, max_iter=200, tol=1e-05, init='tree', alt=False, rng=None)[source]
Use k-means algorithm to set patch labels for a field.
The k-means algorithm (cf. https://en.wikipedia.org/wiki/K-means_clustering) identifies a center position for each patch. Each point is then assigned to the patch whose center is closest. The centers are then updated to be the mean position of all the points assigned to the patch. This process is repeated until the center locations have converged.
The process tends to converge relatively quickly. The convergence criterion we use is a tolerance on the rms shift in the centroid positions as a fraction of the overall size of the whole field. This is settable as
tol
(default 1.e-5). You can also set the maximum number of iterations to allow asmax_iter
(default 200).The upshot of the k-means process is to minimize the total within-cluster sum of squares (WCSS), also known as the “inertia” of each patch. This tends to produce patches with more or less similar inertia, which make them useful for jackknife or other sampling estimates of the errors in the correlation functions.
More specifically, if the points \(j\) have vector positions \(\vec x_j\), and we define patches \(S_i\) to comprise disjoint subsets of the \(j\) values, then the inertia \(I_i\) of each patch is defined as:
\[I_i = \sum_{j \in S_i} \left| \vec x_j - \vec \mu_i \right|^2,\]where \(\vec \mu_i\) is the center of each patch:
\[\vec \mu_i \equiv \frac{\sum_{j \in S_i} \vec x_j}{N_i},\]and \(N_i\) is the number of points assigned to patch \(S_i\). The k-means algorithm finds a solution that is a local minimum in the total inertia, \(\sum_i I_i\).
In addition to the normal k-means algorithm, we also offer an alternate algorithm, which can produce slightly better patches for the purpose of patch-based covariance estimation. The ideal patch definition for such use would be to minimize the standard deviation (std) of the inertia of each patch, not the total (or mean) inertia. It turns out that it is difficult to devise an algorithm that literally does this, since it has a tendancy to become unstable and not converge.
However, adding a penalty term to the patch assignment step of the normal k-means algorithm turns out to work reasonably well. The penalty term we use is \(f I_i\), where \(f\) is a scaling constant (see below). When doing the assignment step we assign each point \(j\) to the patch \(i\) that gives the minimum penalized distance
\[d_{ij}^{\prime\;\! 2} = \left| \vec x_j - \mu_i \right|^2 + f I_i.\]The penalty term means that patches with less inertia get more points on the next iteration, and vice versa, which tends to equalize the inertia values somewhat. The resulting patches have significantly lower std inertia, but typically only slightly higher total inertia.
For the scaling constant, \(f\), we chose
\[f = \frac{3}{\langle N_i\rangle},\]three times the inverse of the mean number of points in each patch.
The \(1/\langle N_i\rangle\) factor makes the two terms of comparable magnitude near the edges of the patches, so patches still get most of the points near their previous centers, even if they already have larger than average inertia, but some of the points in the outskirts of the patch might switch to a nearby patch with smaller inertia. The factor of 3 is purely empirical, and was found to give good results in terms of std inertia on some test data (the DES SV field).
The alternate algorithm is available by specifying
alt=True
. Despite it typically giving better patch centers than the standard algorithm, we don’t make it the default, because it may be possible for the iteration to become unstable, leading to some patches with no points in them. (This happened in our tests when the arbitrary factor in the scaling constant was 5 instead of 3, but I could not prove that 3 would always avoid this failure mode.) If this happens for you, your best bet is probably to switch to the standard algorithm, which can never suffer from this problem.- Parameters:
npatch (int) – How many patches to generate
max_iter (int) – How many iterations at most to run. (default: 200)
tol (float) – Tolerance in the rms centroid shift to consider as converged as a fraction of the total field size. (default: 1.e-5)
init (str) –
Initialization method. Options are:
’tree’ (default) = Use the normal tree structure of the field, traversing down to a level where there are npatch cells, and use the centroids of these cells as the initial centers. This is almost always the best choice.
’random’ = Use npatch random points as the intial centers.
’kmeans++’ = Use the k-means++ algorithm. cf. https://en.wikipedia.org/wiki/K-means%2B%2B
alt (bool) – Use the alternate assignment algorithm to minimize the standard deviation of the inertia rather than the total inertia (aka WCSS). (default: False)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
- Returns:
Tuple containing
patches (array): An array of patch labels, all integers from 0..npatch-1. Size is self.ntot.
centers (array): An array of center coordinates used to make the patches. Shape is (npatch, 2) for flat geometries or (npatch, 3) for 3d or spherical geometries. In the latter case, the centers represent (x,y,z) coordinates on the unit sphere.
- class treecorr.NField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the positions and number of objects in a tree structure from which it is efficient to compute correlation functions.
An NField is typically created from a Catalog object using
>>> nfield = cat.getNField(min_size=min_size, max_size=max_size)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.KField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a scalar field (e.g. kappa in the weak lensing context) in a tree structure from which it is efficient to compute correlation functions.
A KField is typically created from a Catalog object using
>>> kfield = cat.getKField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.ZField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a complex scalar (spin-0) field in a tree structure from which it is efficient to compute correlation functions.
A ZField is typically created from a Catalog object using
>>> zfield = cat.getZField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.VField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a vector field in a tree structure from which it is efficient to compute correlation functions.
A VField is typically created from a Catalog object using
>>> vfield = cat.getVField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.GField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a shear field (gamma in the weak lensing context) in a tree structure from which it is efficient to compute correlation functions.
A GField is typically created from a Catalog object using
>>> gfield = cat.getGField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.TField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a trefoil (spin-3) field in a tree structure from which it is efficient to compute correlation functions.
A TField is typically created from a Catalog object using
>>> tfield = cat.getTField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)
- class treecorr.QField(cat, *, min_size=0, max_size=None, split_method='mean', brute=False, min_top=None, max_top=10, coords=None, rng=None, logger=None)[source]
This class stores the values of a quatrefoil (spin-4) field in a tree structure from which it is efficient to compute correlation functions.
A QField is typically created from a Catalog object using
>>> qfield = cat.getQField(min_size, max_size, b)
- Parameters:
cat (Catalog) – The catalog from which to make the field.
min_size (float) – The minimum radius cell required (usually min_sep). (default: 0)
max_size (float) – The maximum radius cell required (usually max_sep). (default: None)
split_method (str) – Which split method to use (‘mean’, ‘median’, ‘middle’, or ‘random’). (default: ‘mean’)
brute (bool) – Whether to force traversal to the leaves for this field. (default: False)
min_top (int) – The minimum number of top layers to use when setting up the field. (default: \(\max(3, \log_2(N_{\rm cpu}))\))
max_top (int) – The maximum number of top layers to use when setting up the field. (default: 10)
coords (str) – The kind of coordinate system to use. (default: cat.coords)
rng (RandomState) – If desired, a numpy.random.RandomState instance to use for random number generation. (default: None)
logger (Logger) – A logger file if desired. (default: None)