Source code for piff.mean_interp

# Copyright (c) 2016 by Mike Jarvis and the other collaborators on GitHub at
# https://github.com/rmjarvis/Piff  All rights reserved.
#
# Piff is free software: Redistribution and use in source and binary forms
# with or without modification, are permitted provided that the following
# conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions and the disclaimer given in the accompanying LICENSE
#    file.
# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions and the disclaimer given in the documentation
#    and/or other materials provided with the distribution.

"""
.. module:: mean_interp
"""

import numpy as np

from .interp import Interp
from .star import Star

[docs] class Mean(Interp): """The simplest possible interpolation scheme. It just finds the mean of the parameter vectors and uses that at every position. Use type name "Mean" in a config field to use this interpolant. """ _type_name = 'Mean' def __init__(self, logger=None): self.degenerate_points = False self.kwargs = {} self.mean = None self.set_num(None)
[docs] def solve(self, stars, logger=None): """Solve for the interpolation coefficients given some data. Here the "solution" is just the mean. :param stars: A list of stars with fitted parameters to interpolate. :param logger: A logger object for logging debug info. [default: None] """ self.mean = np.mean([star.fit.get_params(self._num) for star in stars], axis=0)
[docs] def interpolate(self, star, logger=None, inplace=False): """Perform the interpolation to find the interpolated parameter vector at some position. :param star: A Star instance to which one wants to interpolate :param logger: A logger object for logging debug info. [default: None] :param inplace: Whether to update the parameters in place, in which case the returned star is the same object as the input star. [default: False] :returns: a Star instance holding the interpolated parameters """ if self.mean is not None: if inplace: star.fit.updateParams(self.mean, num=self._num) else: star = Star(star.data, star.fit.newParams(self.mean, num=self._num)) return star
[docs] def _finish_write(self, writer): """Write the solution. :param writer: A writer object that encapsulates the serialization format. """ cols = [ self.mean ] dtypes = [ ('mean', float) ] data = np.array(list(zip(*cols)), dtype=dtypes) writer.write_table('solution', data)
[docs] def _finish_read(self, reader): """Read the solution. :param reader: A reader object that encapsulates the serialization format. """ data = reader.read_table('solution') assert data is not None self.mean = data['mean']